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Surface Area Increase of Silicon Alloys in Li-Ion Full Cells
Measured by Isothermal Heat Flow Calorimetry
L. J. Krause,∗,z T. Brandt, V. L. Chevrier,∗ and L. D. Jensen

Corporate Research Materials Laboratory, 3M Center, St. Paul, Minnesota 55144-1000, USA

Li-ion pouch cells utilizing a negative electrode formulated with 15 wt% of an engineered Si alloy in a graphite composite electrode
were cycled in an isothermal heat flow calorimeter against a LiCoO2 positive electrode. Two different electrolytes were investigated:
a blend of ethylene carbonate and ethyl methyl carbonate (3EC:7EMC) and a blend of ethylene carbonate, ethyl methyl carbonate
and 1-fluoro ethylene carbonate (27EC:63EMC:10FEC). Both electrolytes were 1 M in LiPF6 salt. The parasitic thermal power and
coulombic efficiency was derived from isothermal heat flow measurements and high precision current-source meters. Cells without
FEC showed high parasitic thermal power which increased with cycle number indicative of a surface area increase which was
confirmed by post-cycling scanning electron micrographs and surface area measurements. Cells with FEC showed relatively stable
parasitic thermal power. These measurements demonstrate the surprising function of FEC in controlling or attenuating the evolution
of surface area in Si alloys. Vinylene carbonate was also found to be effective at controlling the increase in alloy surface area.
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Meeting the promise of silicon or Si alloys to increase the energy
density of Li-Ion cells has been the subject of a great deal of research
and development. To date the full commercial impact of this materi-
als technology has not been met owing to the difficulties found with
silicon.1–6 In general the high capacity fade often found in Li-ion cells
containing Si has 3 main causes: 1) mechanical or electrical discon-
nect of the alloy particles in the composite electrode owing to large
volume changes1–4 2) crystallization effects, mainly the formation of
the Li15Si4
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Figure 5.(a) Parasiticpower and (b) coulombic inefficiency for Gr:Si-alloy//LCO full pouch cells with 3EC:7EMC or 23EC:67EMC:10FEC in

1 M L i P F 6as indicated by the legend. Values were interpolated from Fig-

ures3a n d 4 atanaveragevoltageof3.8V.Electrode cross sections.—ative electrodes from both sets of electrolyte groups were cross sec-tionedandimaged.Figures6athrough 6d show the morphologychangeoftheSialloycontainingnegativeelectrodeswithoutanycycling (fresh) and after 30, 45 and 60 cycles without FEC. The fresh

electrode shows sharp, bright particles of Si alloy. Cycling results in

theformationofagraymaterialcoveringtheparticle,whichthickens

withcyclenumber.TheSialloyparticlesalsobecomeperforatedwith

thegraymaterialanddevelop“hairlike”structuresathighercycle

numbers (Figure6 d 6 isconsistentwithanincreasingsurfaceareaandthicknessofSEIlayer.Figures7athrough 7d compare theelectrodecrosssectionalimagesofelectrodescycledwith10wt%FEC with those cycled in the base electrolyte without FEC at two

differentcyclenumbers.InFigures7aand7 b t h e d i f f e r e n c e i s n o t e s p e c i a l l y d r a m a t i c , b u t t h e c e l l s h a v e b e e n c y c l e d o n l y 3 0 t i m e s . T h e

Figure 6.F E S E M c r o s s s e c t i o n i m a g e s o f n e g a t i v e e l e c t r o d e s f r o m G r : S i - a l l o y / / L C O f u l l p o u c h c e l l s w i t h 3 E C : 7 E M C i n 1 M L i P F 6. ( a ) F r e s h e l e c - trodes, (b)after30cycles, (c)after45cycles, and(d)after60cycles. LightanddarkgrayareascorrespondtoSialloyandgraphite,respectively.

Figure 7.F
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This was done in order to fully delithiate the negative electrode since

they would be exposed to regular air for this analysis. F igure8s
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the BET surface area of the cycled electrodes. Figure8s
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and contraction leads to the exposure of fresh non-passivated surfaces
which continually drive the additive consumption.

Summary

The electrolyte induced cycle life failure of Gr:Si-alloy//LiCoO2

cells was shown by calorimetric and precision cycling methods to be
an expansion of effective surface area where the formed SEI likely
contains active electrochemical surfaces. FEC, used ubiquitously as
an additive to improve the cycle life of Si-containing cells was shown
to greatly attenuate the surface area expansion most likely through
the formation of a denser and more resilient SEI. Sudden capacity
failure, observed after FEC has been consumed was also shown to be
accompanied by surface area expansion.
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